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We report results from molecular dynamics studies concerning the microscopic structure and dynamics of
the ternary, bulk metallic glass-forming Cu60Ti20Zr20 alloy. In detail we consider the partial radial distribution
functions, nearest-neighbor numbers, specific heat, simulated glass temperature, diffusion coefficients, and
incoherent intermediate scattering function �ISF�. The applied atomic model reproduces well experimental
x-ray data of the total radial distribution function. It provides for Cu60Ti20Zr20 a structure with marked
intermediate-range order. The ISF is analyzed within an extension of mode-coupling theory, where the effective
memory kernel is evaluated from the Laplace transform of the ISF. The dynamics of the system fulfills in most
respects the predictions of mode-coupling theory �MCT�, up to an absence of the algebraic t−a decay in the
early � range. Comparison with the calculated memory kernel shows that this absence can be traced back to
deviations of the kernel from its approximate form analyzed in MCT. As by-product, our investigation provides
a method to reconstruct around the critical temperature major parts of the memory kernel from � and the
plateau value fc of the ISF, and it indicates why the critical dynamics predicted by mode-coupling theory can
be observed in a temperature interval of more than 500 K.
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I. INTRODUCTION

With favorable mechanical behavior and good resistance
to corrosion, multicomponent bulk metallic glasses �BMGs�
have attracted extensive research interest �1–5� since the first
synthesis of the La-Al-Ni BMG by copper mold casting in
1989 �1�. However, despite the great achievements in prepa-
ration and characterization of these materials, the specific
details of the liquid-to-glass transition of multicomponent
BMGs have not been fully understood yet and are still an
open question. Here we present results of a molecular dy-
namics �MD� analysis of the BMG-forming Cu60Ti20Zr20 ter-
nary alloy. MD simulations have turned out to be a powerful
tool for obtaining insight into the structure and dynamics of
vitrifying melts on the atomic scale. For multicomponent
metallic glass-forming systems, MD investigations are rather
scarce �but see, e.g., �6–8��, while the method was success-
fully used to study aspects of the liquid-to-glass transition of
binary amorphous metallic alloys �e.g., �9–13��, of the SiO2
melt �14�, glass-forming molecular systems �15,16�, or chal-
cogenids �17�. In particular from the class of the multicom-
ponent BMGs, so far only Al15Ni25Zr60 has been studied by
MD modeling, with the main emphasize on structural aspects
�7�.

There are two reasons for choosing Cu60Ti20Zr20. First,
Cu60Ti20Zr20 is of technological interest. It belongs to the
family of Cu-based BMGs which combine high strength with
good ductility. Among the Cu60Zr40−xTix alloys, Cu60Ti20Zr20
has the highest glass-forming ability, with a reduced glass
transition temperature Tg /Tl of 0.63. Second, from a funda-
mental point of view, MD analysis of Cu60Ti20Zr20 is of

much interest, as this alloy exhibits rather different atomic
interactions than the previously studied Al15Ni25Zr60. While
both systems are fully metallic, Cu60Ti20Zr20 is an alloy with
rather weak atomic pair interactions among the majority Cu
species and strong effects of the electron gas, making that the
Cu atoms act like flexible glue, whereas in Al15Ni25Zr60 the
atoms of the majority component, Zr, have the strongest,
covalent atomic pair interaction of all its constituents and
form a rather rigid matrix.

In our analysis of the MD-simulated dynamics of the
Cu60Ti20Zr20 melt we make use of basic results of mode cou-
pling theory �MCT� �18–22�, which is one of the most suc-
cessful theoretical approaches to describe the liquid side of
the liquid-to-glass transition. MCT provides detailed predic-
tions on the time and temperature dependence of the fluctua-
tion dynamics in the vitrifying melt, where only two param-
eters matter: There is the exponent parameter, which
determines the nonuniversal critical exponents and compa-
rable material coefficients of the melt, and the control param-
eter, which describes the distance of temperature—or any
other quantity like the density—from the critical temperature
and density, respectively. Many predictions of MCT have
been verified qualitatively and quantitatively for a variety of
materials—e.g., the Lennard-Jones fluid �23,24� and binary
metallic alloys �10,11�. There is, however, one particular dis-
crepancy between the MCT predictions and the data of MD
simulations in the so-called early � regime of the intermedi-
ate scattering function. Already in the early investigation by
Lewis and Wahnström �15� this discrepancy was ascribed to
vibration-type particle motions not fully taken into account
in MCT. However, a feasible proof of this explanation is
lacking so far.

We here follow basic lines of MCT. But while MCT either
uses for the memory kernel F�t� a systematic low-order ap-
proximation �11,25–27� or—in its schematic version—a phe-
nomenological expression �28�, we here take up our recent
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approach �10,11� and treat F�t� as an unknown function,
which is evaluated by Laplace transform from the interme-
diate scattering function ��t� and the related equation of
motion, once ��t� is known, e.g., from MD simulations. This
allows us to test which of the basic assumptions of MCT,
especially of the schematic theory, are fulfilled in the ana-
lyzed system here. In this context we then shall make some
remarks concerning the difficulties of MCT to describe the
early � regime.

The organization of the present contribution is as follows:
In the next section, Sec. II, we describe the model applied in
our MD simulations and the methods used for analyzing the
data, including a short description concerning our handling
of the memory kernel. The results of our simulations are
presented and discussed in Sec. III. Section IV then gives a
summary of our findings and some concluding remarks.

II. MODEL AND METHODS

A. Molecular dynamics model

Molecular dynamics simulations are performed for a sys-
tem containing 1372 atoms in an orthorhombic box with pe-
riodic boundary conditions in three directions. At constant
temperature T and zero external pressure P, the equations of
motion are integrated by a fifth-order predictor-corrector al-
gorithm with a time step of 2.5�10−15 s. For maintaining
constant temperature and constant pressure, a Berendsen
thermostat and barostat �29� are used.

In order to describe the atomic interactions in the ternary
Cu-Ti-Zr alloy, a microscopic model is applied similar to the
one used in our previous work for the binary Ni-Zr �10,11�
and the ternary Ni-Zr-Al alloys �7�.

According to this model, the potential energy is composed
of two parts:

Epot = �
i,j

��rij� + Evol�V� . �1�

Here, ��r� is a short-range pair potential, which aims at tak-
ing care of electronic d-state interactions and residual local
couplings between s and p states, and Evol�V� is a volume-
dependent electron gas term.

The pair potentials take the form of Stillinger-Weber
�SW� potentials,

��r� = A� 1

��r�n − 1�exp� 1

�r − a1
�, 0 � r � rcut = a1/� .

�2�

For the electron gas term, we use the expression of Finnis
�30�:

Evol�V� = NNs� a

rs
2 −

b

rs
+ c ln

rs

rB
− d� , �3�

with electron radius

rs
3 =

3V

4N�Ns
. �4�

Ns is the average number of s electrons,

Ns = �
i

xiNs,i, �5�

N the number of simulated particles, V the volume of the
system, rB the Bohr radius, xi the concentration of species i,
and Ns,i the effective number of s electrons for species i. The
parameters a, b, c, d, and Ns,i are listed in Table I.

For estimating the pair-potential parameters, information
from the Hausleitner-Hafner hybridized nearly-free-electron
tight-binding-bond model �31,32� and experimental data are
combined. The fitting SW parameters of Cu-Zr-Ti are listed
in Table II.

The Zr-Zr interaction is taken from �10,11� with param-
eter A rescaled to bring the simulated melting temperature
closer to the experimental value. The parameters of the Ti-Ti
interaction are selected to bring the values of simulated lat-
tice constant, c /a ratio, and cohesion energy of the crystal-
line sample to a fair relation with the experimental data,
assuming a short-range potential with cutoff radius rc
=a1 /� smaller than the next-nearest-neighbor distance in the
crystal. The Cu-Cu interaction is constructed to provide ac-
ceptable values for the simulated lattice constant and cohe-
sion energy, under the restriction to nearest-neighbor interac-
tions. For the Cu-Ti and Zr-Ti interactions, the parameters
are selected to present sufficiently well the lattice constants
of CuTi2, CuTi, CuZr2, and CuZr. Finally, the Ti-Zr interac-
tion parameters are chosen approximately halfway between
the values for the pure components, taking into account the
full miscibility in the Ti-Zr system and the nearly vanishing
mixing enthalpy between the components.

Appendix A gives a comparison of the calculated and ex-
perimental data of some crystalline phases aimed at testing
the present model.

As a further test, we determined the total radial distribu-
tion function of Cu60Ti20Zr20 alloy in the glassy state of
300 K on the basis of this model. The simulation result is
presented in Fig. 1, which also includes the experimental
data of Mattern et al. from an x-ray diffraction �33�. The

TABLE I. Parameters for the electron gas term of the
potential.

a �eV nm2� b �eV nm� c �eV� d �eV� Ns,Cu Ns,Ti Ns,Zr

0.037332 0.51241 0.42172 1.4966 1.38 1.39 1.3

TABLE II. SW potential parameters used in the simulation for
Cu60Ti20Zr20.

A �eV� �−1 �Å� a1 n

Cu-Cu 0.485 2.275 1.681 9

Cu-Ti 1.695 2.300 1.794 7

Ti-Ti 1.588 2.350 2.056 4

Cu-Zr 1.943 2.496 1.792 8

Ti-Zr 2.722 2.481 1.968 3

Zr-Zr 3.655 2.646 1.855 3
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good agreement between simulation and experimental results
indicates that our microscopic model is quite suitable to de-
scribe the atomic interaction of the Cu-Ti-Zr ternary alloy
system. Regarding this, we should emphasize that the param-
eters of the simulation model have not been adapted to the
experimental x-ray data.

In order to generate the ternary liquid structure, we start
with hypothetic face-centered-cubic configuration, which is
equilibrated at 1700 K for 5 ns, leading to a homogeneous
liquid state. Then the system is cooled down to given tem-
peratures with a cooling rate of 3�1010 K/s. The resulting
configurations are relaxed by additional isothermal annealing
runs, and then production runs are carried out and used for
detailed data analysis at the selected temperature.

B. Analysis of dynamics: Self-diffusion coefficients,
intermediate scattering function, and critical temperature

of the mode-coupling theory

The self-diffusion coefficients DA �A=Cu,Zr,Ti� are cal-
culated according to

DA = lim
t→	

1

6t
��r2�t�		A, �6�

from the mean-square displacement �MSD�

��r2�t�		A = ��
xn�
 + t� − xn�
�
2		n�A. �7�

Here the double brackets mean averages over the particles n
of type A and over the evolution time 
. The temperature
dependence of the coefficients DA is tested regarding the
prediction of the MCT �34�,

DA�T� � 
T − Tc
� �T � Tc� , �8�

and regarding agreement with the Vogel-Fulcher-Tammann
�VFT� law �35–37�

DA�T� = DA
0 exp�− Q/�T − T0�� �T � T0� , �9�

where the VFT temperature T0 is assumed to have a value
below Tg. Tc is the material specific critical temperature of
MCT. It can be estimated from independent dynamical quan-
tities, such as the intermediate scattering function �ISF� �e.g.,
�11,24��. As is indicated in the next paragraph, MCT predicts
an intimate relationship between the value of � and the pa-
rameters that govern the time evolution of the ISF.

The incoherent intermediate scattering function �A�q , t� is
evaluated from

�A�q,t� = ��exp�iq�xn�
 + t� − xn�
��		n�A. �10�

The double brackets again indicate averaging over all atoms
of type A and the evolution time 
 as described for the MSD.

In case of Hamiltonian dynamics for the particles, the
Lanczos recursion scheme yields for �A the exact evolution
equation �11�

�A�t� + A
−2�t

2�A�t� + �
0

t

dt�FA�t − t���t�A�t�� = 0,

�11�

with �A�t=0�=1, �
�A�0�=0, A
−2=q2kBT /mA, and the

memory kernel FA depending on q and T. While in binary
and multicomponent systems the coherent ISFs are solutions
of matricial equations �compare, e.g., �26,27,11��, the inco-
herent ISFs are solutions of scalar equations like Eq. �11�,
following from the Lanczos recursion scheme. The math-
ematics for solving Eq. �11� and detailed properties of the
solutions have been developed in the context of the sche-
matic MCT �e.g., �20,34��. Within the full MCT, explicit ap-
proximations have been deduced for FA �25–27� in terms of
coherent and incoherent ISFs, which turned out to be well
applicable to describe essential features of the time and tem-
perature dependence of the correlators �A as well as of the
temperature dependence, e.g., of the viscosity �29,34�. The
theory predicts, in particular, the existence of nonvanishing
asymptotic values

�A�q,t → 	� = fA
c �q� � 0 �12�

for temperatures below a critical Tc, which means the exis-
tence of an arrested state with nondecaying structural corre-
lations.

In our analysis we adopt from the schematic MCT
�18,19,28� detailed results about solutions of equations like
Eq. �11�. In the schematic MCT, one restricts oneself to one
relevant correlator �A with properly selected q, and FA is
modeled by a polynomial in �A, e.g., Frs,A=�1�A

r +�2�A
s ,

plus a singular contribution ���
+�. �1 and �2 are functions
of temperature and/or of density of the system. Within this
approach, Tc is the highest temperature at which the relation

fA
c /�1 − fA

c � = Frs,A�fA
c � �13�

is fulfilled, with fA
c defined by Eq. �12�.
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FIG. 1. �Color online� Total radial distribution function of ex-
perimental �33� and simulated amorphous Cu60Ti20Zr20 at 300 K.
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According to MCT, around Tc the correlator �A shows, on
a logarithmic time scale, an initial decay due to particle vi-
brations, a broad shoulder, the so-called � regime, and—
above Tc—the final � decay. In detail, around Tc the cor-
relator �A behaves like

�A�t� = fA
c + h�t� , �14�

h�t� = A/ta, t � t�, �15�

and

h�t� = const, for t� � t and T � Tc, �16�

h�t� = − Btb, for t� � t � 
� and T � Tc. �17�

Here t� sets the time scale of the �-relaxation regime and 
�

means the relaxation time of the final � decay.
For the late �-relaxation regime the correlation function

can be well approximated by the Kohlrausch-Williams-Watts
�KWW� function

��q,t� = A0 exp�− �t/
���� . �18�

It has been shown �38� that Eq. �18� becomes an exact solu-
tion in simple liquids in the case of large values of q.

It is one of the great achievements of the MCT that it
traces back all the exponents in Eqs. �14�–�18� to one “ex-
ponent parameter” �, which is related to the memory kernel
FA by �28�

� = 1
2�2FA���/��2�1 − fA

c �3 at T = Tc and � = fA
c .

�19�

The full MCT predicts that there is one common component-
independent � for all chemical constituents of the system, a
relationship well documented for binary systems, e.g.,
�26,27�. The exponents a, b, and � follow from � by

� = �2�1 − a�/��1 − 2a� = �2�1 + b�/��1 + 2b� , �20�

� = 1/2a + 1/2b �21�

�0.5���1, a�0.395, 0�b�1�. � governs the temperature
dependence of 
� according to


� � �T − Tc�−� �22�

when approaching Tc from above. Moreover, the F12 model
yields for the KWW exponent � the approximation �39,40�

� =
ln 2

ln�1 − ��
, �23�

while, on the other hand, in the large-q limit the asymptotic
result �→b is expected.

We here follow the basic lines of the MCT, but like in
�10,11� we treat the memory kernel FA�t� as an unknown
function, which can be calculated from the Laplace trans-
forms of Eq. �11� and of �A�t�, once the latter is known, e.g.,
from MD simulations. �In the following the suffix A shall be
skipped for brevity. The relations hold in all cases for one
specific correlator and memory kernel, characterized by com-
ponent index A and wave vector q.� Using the notation

�c��� + i�s��� = lim
�→0

L���−i� �24�

for the Laplace transform, one obtains

F�t� = �2/���
0

�

d�Fc���cos��t� , �25�

�Fc��� =
��c���

�1 − ��s����2 + ���c����2 . �26�

Therefrom a function F��� is constructed by relating to
each ��t� the value F�t�, where F��� is single valued if ��t�
is monotonic in t. Our approach proceeds by introducing the
gm parameter �10,11,44�, the maximum value of the function

G��� ª F�����−1 − 1� , �27�

gm ª max�G���
0 � t � �  . �28�

Below we use the notation �m for the � value at which
the maximum occurs, which means

�G���/�� = 0 at � = �m. �29�

If gm�1, there is no arrested solution and the system is in
the liquid state. gm�1 announces that the system can reach
the arrested state. Therefore, gm can be used as a measure of
the extent to which the system has approached the arrested
state. Following the treatment in �10,11�, we shall use the
temperature dependence of gm�T� as an indication of how the
system approaches this state and as a means to estimate the
critical temperature Tc.

As a particular test of our estimates of F��� and the ap-
plicability of our approach, we shall compare F��� with its
Taylor expansion around �m at temperature close to Tc:

f��� = F��m� + F���m��� − �m� + 1/2F���m��� − �m�2

+ ¯ . �30�

According to Eqs. �27� and �28�, F��m� and F���m� can be
determined from knowledge of gm and �m:

F��m� = gm/��m
−1 − 1� , �31�

F���m� = gm/�1 − �m�2. �32�

F���m� is determined by the exponent parameter �, which
means by the time evolution of the system, as visible, e.g.,
by the parameter �. Comparison of f��� with F���, there-
fore, means a test whether, e.g., the temperature dependence
of the system, Eq. �22�, can be related to the estimated F���.

III. SIMULATION RESULTS AND DISCUSSION

A. Enthalpy and specific heat

In this section, we report MD-simulated thermodynamic
properties of Cu60Ti20Zr20 alloy. Figure 2 demonstrates the
enthalpy per atom as a function of temperature. Clearly, there
is break in the slope of the enthalpy curve, which indicates
the glass temperature Tg corresponding to the chosen cooling
rate.
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By differentiating the enthalpy H with respect to tempera-
ture, we obtain the specific heat at constant pressure, Cp,
presented in Fig. 3. In the high-temperature range of
1200–1700 K, Cp increases slightly with decreasing tem-
perature, which is the normal behavior of an equilibrium
liquid �42�. In the range of 1000–1200 K, a sharp increase of
the specific heat is seen. Such a sharp increase of the specific
heat also is well settled by experiments �43�. Below 900 K,
Cp decreases with reduction of temperature, which is taken
as an indication that the system begins to fall out of equilib-
rium. Below 500 K, Cp changes almost linearly with tem-
perature and tends to take on the classical Dulong-Petit value
expected for harmonic solids �Cp�25 J mol−1 K−1�. The
simulation results indicate a glass transition regime between
about 850 K and 600 K. Linear extrapolation of the low-
temperature behavior and the decay between 800 K and
900 K yields an intersection at 753 K, which we interpret as
the apparent glass transition temperature for the present cool-

ing rate. This estimate is close to the experimental one,
Tg

expt=710 K �5�. With respect to our necessarily large cool-
ing rates, this agreement seems astonishing on the first
glance. One has to realize, however, that we estimated Tg
from the specific heat under cooling, while experimentally
usually the curve under heating is analyzed. Due to hyster-
esis effects, Tg from cooling is expected at markedly lower
temperatures than its estimate from heating, leaving suffi-
cient space for cooling rate effects between our value and the
experimental one.

B. Partial radial distribution function

By analyzing the radial distribution function, we obtained
some information about the chemical short-range order in the
Cu60Ti20Zr20 melt. The calculated partial radial distribution
functions �RDFs� gij�r� at 300 K are shown in Figs. 4�a� and
4�b�. There are some interesting features in the partial RDFs.
First, there is a pronounced second peak in the Ti-Ti and
Zr-Zr pairs, indicating that Ti-Ti and Zr-Zr have strong
intermediate-range �IR� order. Compared to this, Cu-Cu
seems to have weak or normal IR order. Second, Cu-Cu,
Cu-Ti, and Cu-Zr pairs have a split in the second peak, which
is not the case of Ti-Ti, Ti-Zr, and Zr-Zr pairs.

From integration of partial densities up to the first mini-
mum in the radial distribution function, we obtain the coor-
dination numbers Zij listed in Table III. According to the data
of Table III, Cu has a total of 11.2 neighboring atoms. �Note
that xiZij =xjZji, with xi and xj the fractions of i and j par-
ticles in the system.� In a random system, one would expect
Cu to have 60% Cu neighbors, which means 6.7, while the
simulations give 4.77. This means that Cu has an increased
affinity to Ti and Zr atoms. This tendency can be easily seen
from the projection of a configuration at 300 K shown in Fig.
5. There it looks as if one- and two-dimensional arrange-
ments of Zr and Ti atoms are wrapped by shells of Cu atoms,
which provide the interaction between the different Zr-Ti
groups.

Like the recently analyzed simulation data for the ternary
bulk glass-forming Al15Ni25Zr60 �7�, the present results for
Cu60Ti20Zr20 indicate a rather complex structure with signifi-
cant intermediate-range order. There is, however, a marked
difference between the present findings and the previous
ones, which obviously reflects differences in the interatomic
couplings of the two systems. The present system is charac-
terized by the fact that among the atoms of the majority
component Cu, there is only a negligibly weak attractive pair
interaction with the main part of cohesion coming from the
indirect electron gas pressure. In the former Al15Ni25Zr60
system, Zr atoms form the majority component which thus is
characterized by strongly attractive covalent pair interac-
tions. According to that, in the Zr-dominated structure the
minority Al and Ni atoms reside in suitable polyhedral cages
within a rigid Zr matrix. Al is found in icosahedral holes, Ni
mainly in trigonal-prismatic environments. An additional IR
order arises in the structure as Al atoms prefer to form short
stringlike structures with Al-Al neighbors while the Ni atoms
with their trigonal-prismatic cages form strings that avoid
direct Ni-Ni contacts. The global IR of amorphous
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FIG. 2. �Color online� Reduced enthalpy of simulated amor-
phous Cu60Ti20Zr20 versus temperature.
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FIG. 3. Specific heat of simulated amorphous Cu60Ti20Zr20 ver-
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Al15Ni25Zr60 then follows from combining these structural
elements in a space-filling way. In the present case, for the
Cu60Ti20Zr20 system, the IR structure seems much more flex-
ible than in the Zr-dominating melt, probably due to the flex-

ibility in the Cu subsystem, which acts like glue with strong
adhesion to the Ti and Zr atoms but minor rigidity within the
Cu sheets.

The evolution of structure is analyzed by investigating
the temperature dependence of six partial RDFs shown in
Fig. 6. There we observe a split of the second peak in the
Cu-Cu, Cu-Ti, and Cu-Zr RDFs at a temperature around
1000–1100 K and below, which means an increased short-
range order compared to higher T. Interestingly, the sharp
increase of specific heat also occurs in this temperature
range. There may be some relationship between the pro-
nounced short-range order and the sharp increase of the spe-
cific heat. In fact, the liquid with pronounced short-range
order has lower energy than the normal one, which leads to a
larger temperature dependence of the enthalpy. This argu-
ment gives a way to understand why the specific heat under-
goes a sharp increase with decreasing temperature, which
just begins when the splitting of the second peak starts.

C. Mean-squared displacements and self-diffusion coefficient
of Cu60Ti20Zr20 alloy

MSDs were investigated for the three species Cu, Ti, and
Zr at different temperatures. Since the MSD for the different
species shows similar features, we display for illustration
only the MSD of Cu atoms in Fig. 7. At higher temperatures,
the MSD can be divided into two regimes, the ballistic re-
gime and the diffusive. At lower temperatures, approaching
Tg, there appears a plateau at intermediate times, which be-
comes larger with decreasing temperature and extends over
several decades in time at the lowest temperature. The pla-
teau reflects the fact that the moving particle is temporarily
arrested in a cage formed by the neighboring atoms. With the
decrease of temperature, this cage becomes more rigid and
can be broken up only after increasingly long-time periods.

From the first derivative of the MSD in the diffusive re-
gime, the self-diffusion coefficients for the three species
were evaluated. The results are shown in Fig. 8. In the liquid
phase the coefficients decay with decreasing temperature in a
super-Arrhenius manner, in agreement with experiments �44�
and simulations for structural glass-forming models like
Ni50Zr50 �44,45�, Ni20Zr80 �11�, Cu50Zr50 �44�, or the
Lennard-Jones system �23�. In order to test the predictions of

TABLE III. Nearest-neighbor distances dij and mean coordina-
tion numbers Zij of atoms type j around atoms of type i in amor-
phous Cu60Ti20Zr20 at 300 K.

dij �Å� Zij

Cu-Cu 2.35 4.77

Ti-Cu 2.65 8.53

Zr-Cu 2.85 10.76

Ti-Ti 2.95 3.0

Ti-Zr 3.15 3.92

Zr-Zr 3.25 2.96
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FIG. 4. �Color online� Partial radial distribution function of
simulated Cu60Ti20Zr20 in the glassy state at 300 K.

FIG. 5. �Color online� Projection of the configuration at 300 K.
The thickness of the projected slice is 5 Å. The dark, gray, and
white balls represent Zr, Ti, and Cu atoms, respectively. The vertical
box length is 2.756 nm.
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the MCT �34� for the self-diffusion coefficient, we approxi-
mated their temperature dependence by the MCT power law,
Eq. �8�. Figure 8 demonstrates that Eq. �8� can describe the
self-diffusion coefficient of the three species quite well in the
temperature range down to 950 K. Data analysis gives a Tc
value of 870 K for three species and � values of 1.66, 1.69,
and 1.62 for Cu, Ti, and Zr, respectively. However, the ex-
ponents � are clearly below the lower limit �c�1.765 set by
MCT through Eq. �21�. The deviation from the MCT predic-
tion found here has its counterpart in earlier simulations, like
for the Lennard-Jones model �23� or the Ni50Zr50 �45�. The �
values found there are above �c, but they deviate from the
prediction of Eq. �21�, which fixes � when knowing one of
the parameters a or b from an independent “measurement.”

The self-diffusion coefficients are also fitted using the em-
pirical VFT law �35–37�. The results are included in Fig. 8
by dashed lines. Figure 8 demonstrates that the VFT law

represents the self-diffusion coefficients well above 850 K.
Data regression gives a T0 value of 630, 643, and 653 K for
Cu, Ti, and Zr, respectively. The corresponding B values are
1637.610, 1660.890, and 1717.693, respectively. The limit-
ing temperature of 850 K is close to the MCT Tc, but as
already mentioned, this temperature marks for our system
also the onset of its falling out of equilibrium under the
applied cooling rate. Regarding this, the coincidence with Tc
might be an accidental one, reflecting the fact that our Tg is
rather close to Tc. The present finding has to be seen in
context with the results by Kob and Andersen �23� for the
Lennard-Jones system, where the MCT formula turned out
superior to the VFT relationship when restricting to tempera-
tures T�1.07Tc. Our analysis shows that the VFT law gives
a fair representation of the DA down to Tc.

D. Incoherent intermediate scattering function �„q , t…

In order to characterize the time evolution of the ternary
system in more detail, we have analyzed the intermediate
scattering function ��q , t� for the three components Cu, Ti,
and Zr. Since they exhibit similar characteristics, we present
in Fig. 9 the ISF only for Cu at different temperatures for a
wave vector of q10=22.4 nm−1, which corresponds to the
first peak of the total radial distribution function r�2.8 Å in
r space.

The behavior of the ISF is the one well known from ex-
periments �46� and simulation �9,15,24,41�: For short times,
��q , t� shows a Gaussian-type dependence on time, which is
consistent with the ballistic motion of the particles. At high
temperatures a further decay takes place, which is close to an
exponential decay, as can be inferred from the fact that for
high T the non-Gaussian parameter in general is small and
the MSD approaches diffusive behavior.

As temperature decreases, there appears a small shoulder
in the intermediate-time range, indicating the beginning for-
mation of the � regime. When the temperature decreases to
about 850 K, this shoulder develops into a plateau, which
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FIG. 7. �Color online� MSD of Cu atoms at different tempera-
tures in simulated Cu60Ti20Zr20.
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extends further with further decrease of temperature. For this
late � relaxation regime, MCT yields that the ISF can be
described by the von Schweidler law, Eq. �14�, which turns
into the final � decay, for which MCT gives the KWW rela-
tionship, Eq. �18�, as a useful approximation.

Figure 10 presents the temperature dependence of 
�,
where 
� is obtained by fitting the KWW law to the MD data
of the ISF. MCT predicts for the temperature dependence of

� a critical behavior with exponent −� as given by Eq. �22�.
In Fig. 10, the lines present curves of the form of Eq. �22�
fitted to the 
� values. Clearly, expression �23� can describe
very well the temperature dependence of 
� above Tc, with
Tc=857 K for three species and � values 2.19, 2.10, and 2.21
for Cu, Ti, and Zr, respectively. These � values are larger
than the values derived from the self-diffusion coefficient
and are clearly above the critical value �c of MCT.

E. Dynamical susceptibility

The dynamical susceptibility �����=��c��� of the
Cu60Ti20Zr20 ternary alloy was computed from the cosine-
Fourier transformation of the ISF. For demonstration, the dy-
namical susceptibility of the Cu atoms at different tempera-
tures is presented in Fig. 11. The figure shows that at high
temperatures �curves to the left� there is only one peak and it
is located at microscopic frequencies. As the temperature de-
creases, this peak splits gradually into two. One stays at the
microscopic frequencies; the other, the �-relaxation peak,
moves towards low frequencies with the decrease of tem-
perature.

MCT predicts that the position of �-relaxation peak, �max,
follows a power law of temperature:

�max � �T − Tc��, �33�

with � according to Eq. �21�. As illustrated in Fig. 12, this
prediction holds quite well in our case. Data fitting results in
Tc=855 K for the three species and the � values are 2.225,
2.156, and 2.145 for Cu, Ti, and Zr, respectively. These �

values are quite close to those derived from 
�.
The � relaxation takes place in the frequency range be-

tween high-frequency microscopic dynamics and low-
frequency � decay. In this range, there is a minimum in ��,
whose position and value we denote by �min and �min� , re-
spectively. MCT predicts the relationship �20�

�min� � �T − Tc�1/2. �34�

In Fig. 13, we present �min� versus T−Tc in a double-
logarithmic plot. Linear regression gives a critical tempera-
ture of 865 K and exponents 0.52443, 0.52637, and 0.57374
for Cu, Ti, and Zr, demonstrating that the prediction of MCT,
Eq. �34�, holds well in the bulk-glass-forming ternary
Cu60Ti20Zr20 melt.
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FIG. 10. �Color online� �-relaxation time for the three compo-
nents in simulated Cu60Ti20Zr20 at different temperatures.
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F. Memory kernel FA„�…

According to Sec. II, the frequency-dependent memory
kernel FA��� can be evaluated from Laplace transformation
of the evolution equation �11� and of �A�t�. As to be ex-
pected from the mentioned similarity of the ISFs for Cu, Ti,
and Zr, the FA��� turned out to be rather similar. For dem-
onstration, we display in Fig. 14 the results for Cu at various
temperatures �wave vector q=22.4 nm−1� obtained from the
ISF of Fig. 9. In agreement with the observation for Ni50Zr50
�10�, the figure shows marked contributions to �Fc��� in
those frequency ranges where the susceptibility ����� has
large amplitudes.

Fourier transformation of Fc��� allows one to determine
F�t�. Therefrom we have constructed the function F��� for
Cu, Ti, and Zr, Fig. 15, by plotting F�t� vs ��t�. At low

values of � �below about 0.5� F��� is only weakly tempera-
ture dependent and shows a monotonic increase. From Fig.
15 it is obvious that for � values below the limit of about 0.5
the function F��� may be well approximated by a polyno-
mial P��� as assumed by MCT. On the other hand, for �
values around and above 0.8, there are marked deviations
from the low-� behavior, where the onset of the deviation
shifts to lower � the higher the temperature is. The � range
of deviation from low-� behavior agrees with the regime of
the initial decay of the ISF due to the atomic vibrations. This
can be seen by comparing the plot of the ISF �Cu�t�, Fig. 9,
and the FCu��� dependence, Fig. 15. Our observation thus
reconfirms the earlier finding for Ni50Zr50 �10�, that the poly-
nomial approach for F���, proposed and analyzed in the
schematic MCT, is not applicable in the range of the struc-
tural decay by atomic vibration. In particular, the present
approach predicts at low temperatures a rather sharp bound-
ary �b�T� above which the MCT predictions will not be
valid. While the sharp boundary �b�T� at lower temperatures
is given from the abrupt break in the slope of FCu���, it turns
into a smooth deviation from the MCT results at higher
temperatures—e.g., 1100–1300 K in Fig. 15.

G. Estimate of Tc from gm„T… and test of the present approach

Following the method of �10,11,41�, we estimate here the
critical temperature Tc from analyzing the properties of
G���, Eq. �27�, as described in Sec. II. In Fig. 16, we present
the temperature dependence of gm�T�, the maximum of
G���, for the three components of our ternary Cu60Ti20Zr20

alloy. There are two distinct linear temperature ranges visible
in Fig. 16. As temperature decreases at temperatures higher
than 850 K, gm increases linearly towards the value of 1 with
a large slope. Below 850 K, gm remains close below the
limiting value of 1 and increases slightly and linearly with
decrease of temperature.

This behavior is similar to that observed in simulations
for Ni50Zr50 �10� and Ni20Zr80 �11�. It indicates that all sys-
tems analyzed avoid a sharp crossover and the entrance into
the arrested state by remaining below the gm=1 borderline.
This is taken as an indication of more complex correlated
dynamical many-body processes, such as transversal currents
or collective thermal excitations, not fully taken into account
in the approximate memory kernel of MCT �compare
�26,27�� or the temperature dependence of the �1 and �2
parameters in the schematic MCT.

We here use an extrapolation of the gm�T� values above
850 K to estimate an apparent Tc value for the simulated
melt and to map its properties above this value to the predic-
tions of the schematic MCT. Linear fit of gm values for Cu,
Ti, and Zr atoms above 850 K predicates a crossover tem-
perature Tc

* from liquid �gm�1� to quasiarrested �gm→1�
behavior around 851 K for Cu, 856 K for Ti, and 858 K for
Zr. We estimate Tc as 855 K from the mean value of these
three Tc

*. As demonstrated by Table IV, this value agrees with
the ones estimated from the position of �-relaxation peak
�Fig. 12� and from �max�T�, giving additional substantiation
to the assumption of Ref. �11� that all these methods can be
used equally well to estimate Tc.
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As indicated in Sec. II, by comparing F��� with its Taylor
expansion f��� around �m, Eq. �30�, we can test the consis-
tency between our calculated F��� and the prediction of the
schematic MCT for the time evolution of the correlator ��t�.
According to Eqs. �31� and �32�, F��m� and F���m� are fully
determined by gm and �m. The MCT predicts that F��fc� can
be estimated from the exponent parameter � and the critical
correlator fc, Eq. �19�. Consistency between our approach
and MCT implies in particular �m�Tc�= fc, which means we
may deduce F���m� from � by identifying fc with �m�Tc� in
Eq. �19�.

The value of � is estimated from the exponents � by
means of Eqs. �21� and �22�. For evaluating � we take into
account the � exponents from the temperature dependence of

� and �max, compiled in Table V, leaving aside the data
from the diffusion coefficients. Regarding the scattering of
the two values for each species and the rather close agree-
ment between the man values for the three components, it
seems natural to deduce from the � values a component-
independent mean ��	= =2.17, yielding �=0.661 and a

=0.342, b=0.705. The assumption of a component-
independent � is in agreement with the results of the full
MCT. As presented in a number of studies for binary systems
�24,39,40� MCT predicts the existence of one and the same �
for the different species. There are no serious doubts that the
arguments providing the component-independent � in the bi-
nary case will not hold for the ternary system, too. Table V
also compiles the further data needed for constructing the
Taylor expansion f���.

The resulting second-order expansions f��� around
�m�850 K� are included in Fig. 15. For all three species, the
plot demonstrates good agreement between F��� and f���
for � close to �m. The deviations between the functions
F��� and the series expansions f��� at lower � are due to
our being limited to a second-order approach. The deviation
at values well above �m may be due to uncertainties in the
evaluation of F��� at 800 K and 750 K. Evaluation of
F���m� from ��	 and �, respectively, depends significantly
on a proper estimate of fc. Regarding this sensitive depen-
dence, the agreement between F��� and f��� must be taken
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as a great demonstration of the consistency between the ap-
proaches used.

In the �-decay regime, ��t� can be well represented by
the KWW law, Eq. �18�, with suitably chosen amplitude A0,
relaxation time 
�, and exponent �. Around Tc, the amplitude
A0 should be close to fc. Applicability of the KWW law with
this amplitude is demonstrated by Fig. 17 for Cu, Ti, and Zr,
where the simulation data are shown for T=850 K and, by
dashed line, the KWW approximation. In Fig. 17, the straight
lines in the �-decay regime describe for each component the
tangent to the KWW law vs ln�t� at 
� with slope −�fce

−1.
The corresponding � values are included in Table V. The
values are rather close to each other, ranging from 0.678 for
Cu to 0.650 for Ti. They are not too far away from the
asymptotic MCT result in the large-q limit, �→b=0.705,
and they are close to the value �=0.64 following from the
approximation, Eq. �23�, when using for � the mean value
deduced above.

IV. SUMMARY AND CONCLUDING REMARKS

The present contribution reports results from MD model-
ing of the ternary, bulk metallic glass-forming Cu60Ti20Zr20
system. As mentioned in the Introduction, the system was
chosen as an example of a BMG-forming melt with rather

promising technological features �5�. The present research
was aimed at getting information on the microscopic proper-
ties of Cu60Ti20Zr20 and at promoting our knowledge of
glass-forming melts at all. Accordingly, we here provided
results concerning basic properties of the Cu60Ti20Zr20 under-
cooled melt, such as the partial radial distribution functions
and nearest-neighbor numbers, specific heat, simulated glass
temperature, or the diffusion coefficients. A second group of
results is related to the fluctuation dynamics in time, visible,
for example, in the intermediate scattering function, and the
analysis of this function within the mode coupling theory.
Here we considered the critical temperature Tc of MCT, tests
of the MCT predictions concerning the time and temperature
dependence of various quantities, and the evaluation of the
apparent memory kernel that provides the damping of the
dynamics in the complex, highly viscous structure.

First we will emphasize once again that our model repro-
duces well the experimentally determined total radial distri-
bution of Cu60Ti20Zr20 �33�, which is a clear indication that
the model meets well the steric conditions of the system.
Regarding further details of the structure, our investigation
shows that the present system differs significantly from that
of the previously analyzed ternary Al15Ni25Zr60 alloy �7�,
which is also an interesting BMG-forming system. The dif-

TABLE IV. Estimated values of Tc for simulated Cu60Ti20Zr20

from different methods.

Estimating methods Tc �K�

Self-diffusion coefficient 870

�-relaxation time 850

Position of �-relaxation peak 855

Minimum of � regime 865

Memory kernel 855

TABLE V. Data for constructing the Taylor expansion f��� for
Cu, Ti, and Zr from simulation of Cu60Ti20Zr20 at 850 K and esti-
mated � values. � from the KWW law.

Cu Ti Zr

gm 0.987 0.989 0.992

�m 0.75634 0.7815 0.8238

���max� 2.225 2.156 2.145

��
�� 2.19 2.10 2.21

� 0.6782 0.650 0.663
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FIG. 16. �Color online� gmax for the three con-
stituents in simulated Cu60Ti20Zr20 as a function
of temperature.
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ference in structure seems due to the fact that in the present
material the Cu atoms form the majority component, which
have only weak couplings among each other but strong co-
valent bonding to the minority components Ti and Zr. Ac-
cordingly, the majority atoms act like flexible glue that holds
tightly together groups of strongly bound Ti and Zr atoms.
The overall structure seems to be built by groups of Ti and
Zr atoms wrapped by sheets of Cu atoms, which provide the
coupling between the Ti-Zr groups. In contrast to this, in the
Zr-based Al15Ni25Zr60 structure, the majority component of
Zr atoms forms a rigid matrix, within which the Al and Ni
atoms are immersed in well-defined polyhedral cages. The
intermediate-range structure in this material is determined by
the relative arrangement of these cages.

Despite the significant differences in details of the struc-
ture, the present ternary Cu60Ti20Zr20 and the earlier
Al15Ni25Zr60 systems have in common that they display a
complex intermediate-range structure, which reflects a com-
plicated interplay between the short-ranged chemical bond-
ing between the three components, steric conditions enforced
by the size of the components, and optimization of the
chemical potential when forming the space filling structure.

The analysis of the intermediate scattering function in
terms of MCT and its modification �10,11� shows that the
present ternary Cu60Ti20Zr20 behaves in this respect like the
common binary glass-forming melts—e.g., the NiZr alloys
�10,11� or the Lennard-Jones model �24�. We have in particu-
lar deduced that the present system fulfills well the predic-
tions of MCT concerning the existence of a common expo-
nent parameter � for the different chemical components and
the interrelationship between the � parameter and the critical
exponent � that governs the temperature dependence of the
�-relaxation time 
� or the shift of the �-relaxation fre-
quency peak �� above Tc.

In contrast to this agreement with the results of MCT, the

algebraic t−a decay predicted by MCT for the early � regime
was not found for the present system, as it was not found in
former MD studies of structural glasses and related systems
�10,11,14,24�. Already in the early MD simulation by Lewis
and Wahnström �15�, the absence of this decay was attributed
to masking effects by single-particle vibrations, not taken
into account in MCT.

The present analysis provides direct confirmation of this
argument from transforming the time dependence of the
memory kernel F�t� by use of ��t� into an F��� relationship.
For T around Tc, we find that only for � values below a
critical �b does the kernel F��� have the smooth,
polynomial-like � dependence assumed by the schematic
MCT. Above that value, F��� exhibits a rather different be-
havior. From comparison with ��t� it is obvious that the �
range above �b is just the range where the decay of the
correlator ��t� with time is governed by the atomic vibra-
tions. Since �b is only slightly above the plateau value of the
correlator, there is nearly no � range left for developing the
t−a decay. The existence of the boundary �b and its meaning
for the memory kernel are known already for Zr-rich NiZr
systems �10,11�, which are dominated by marked covalent
bonding in the majority component of Zr atoms. The present
study demonstrates that the same mechanism acts also in a
metallic melt with simple-metal-like interactions among the
majority atoms.

As an important by-product, our analysis predicts that the
memory kernel F��� for the correlator � can be constructed
for T near Tc and � around the asymptotic nonergodicity
parameter value fc of the schematic MCT, when knowing the
exponent parameter � �e.g., from the � exponents�, the value
of fc, and the value of the gm parameter at the apparent Tc.
Within the assumptions of the schematic MCT, gm takes on
the borderline value 1 at Tc, while our analysis yields gm
values deviating from this borderline by the order of 10−2 at
the effective Tc. With regard to that, a rough picture of F���
around �= fc can be gained already from knowing � and the
plateau value fc, approximating, in Eq. �31�, gm�1.

There is a further point to address. In our approach, we
use gm as the fundamental quantity to visualize how the melt
approaches the arrested state. In accordance with the treat-
ments for the binary NiZr melts �10,11,41�, the present
analysis shows a linear increase of gm with decreasing tem-
perature in a broad temperature range. This implies that the
approach of the system towards the arrested state, indeed, is
linear in the control parameter �= �T /Tc−1�, up to a narrow
regime close to Tc. For all systems analyzed by our method
so far, the linear �T−Tc� dependence extends over more than
500 K, where an upper limit has not yet been observed. This
large region of proportionality explains why the predictions
of MCT concerning the critical temperature dependences of
the systems are applicable for a rather large range of the
control parameter �, up to values of � around 0.5 and above.

In conclusion, our analysis has contributed information
about the microscopic properties of the ternary BMG-
forming Cu60Ti20Zr20 melt, and it may help to promote our
knowledge about the characteristic phenomena governing the
physics in the range of the glass transition, especially around
the critical temperature Tc of the MCT. We have shown that
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FIG. 17. �Color online� ISF for Cu, Ti, and Zr at 850 K in
simulated Cu60Ti20Zr20 and the KWW law, Eq. �18�, for each com-
ponent with � and A0=�m from Table V. The straight lines in the �
regime are the tangents to the KWW law vs ln�t� at 
�.
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Cu60Ti20Zr20, like the earlier investigated Al15Ni25Zr60 �7�, is
characterized by a microscopic structure with marked
intermediate-range order and that its dynamics fulfills in
most respects the predictions of MCT �18–22�, up to an ab-
sence of the algebraic t−a decay in the early � regime. From
evaluating the effective memory kernel F��� of the system,
this absence is traced back to deviations of F��� from the
approximate form analyzed in MCT, where a method to re-
construct around Tc major parts of F��� from � and the
plateau value fc turned out as a by-product of our investiga-
tion.
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APPENDIX

Here we present some tests of the interaction potentials
for the Cu60Ti20Zr20 alloy. Table VI presents results for the
monatomic crystalline Zr, Ti, and Cu systems, which test the
Zr-Zr, Ti-Ti, and Cu-Cu interactions used here. Table VII
presents results for crystalline CuTi2, CuTi, CuZr2, and
CuZr, in particular aimed at testing whether the applied po-
tential is able to well describe the steric aspects of the inter-
action.
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